Unlocking the Power of NOR Gates: Implementing Complex Logic Expressions


Unlocking the Power of NOR Gates:

Implementing Complex Logic Expressions


NOR Gate:

This is an OR gate followed by a NOT gate, or a NOT-OR gate. If any of 

the inputs are high, the output of the NOR gate is low. An OR gate with a tiny 

circle on the output serves as the sign. The little circle is a representation 

of inversion.

Why it is considered as Universal Gate?


Table:

A

B

~(A+B)

0

0

1

0

1

0

1

0

0

1

1

0



Diagram:


 
Task 1: Verification of AND Function:

    Observation:

            ·        By giving input ‘0’ and ‘0’ the output was ‘0’.

            ·        By giving input ‘0’ and ‘1’ and output was ‘0’.

            ·        By giving input ‘1’ and ‘0’ and output was ‘0’.

            ·        By giving input ‘1’ and ‘1’ and output was ‘1’

            ·        Above steps verify that it’s an AND gate.

A

B

F=A.B

0

0

0

0

1

0

1

0

0

1

1

1

        
    Observation Table:

A

B

X=~A

Y=~B

X+Y

A.B=~(X+Y)

0

0

1

1

1

0

0

1

1

0

1

0

1

0

0

1

1

0

1

1

0

0

0

1


          ·    Step 1: Take Complement of A and Store in X.

        ·     Step 2: Take Complement of B and Store in Y.

        ·     Step 3: Take AND of X.Y.

        ·    Step 4: Complement of ~(X+Y) gives A.B.


    AND gate using NOR:



Task 2: Verification of OR Function:

    Observation:

            ·                    By giving input ‘0’ and ‘0’ the output was ‘0’.

            ·                    By giving input ‘0’ and ‘1’ and output was ‘1’.

            ·                    By giving input ‘1’ and ‘0’ and output was ‘1’.

            ·                    By giving input ‘1’ and ‘1’ and output was ‘1’

            ·                    Above steps verify that it’s an OR gate.

A

B

F=A+B

0

0

0

0

1

1

1

0

1

1

1

1



    Observation Table:

A

B

A+B

M=~(A+B)

~(M)

0

0

0

1

0

0

1

1

0

1

1

0

1

0

1

1

1

1

0

1

       
    OR gate using NOR:


Task 3: Verification of XOR Function:

    Observation:

            ·        By giving input ‘0’ and ‘0’ the output was ‘0’.

            ·        By giving input ‘0’ and ‘1’ and output was ‘1’.

            ·        By giving input ‘1’ and ‘0’ and output was ‘1’.

            ·        By giving input ‘1’ and ‘1’ and output was ’0’.

            ·        Above steps verify that it’s an XOR gate.

A

B

A⊕B

0

0

0

0

1

1

1

0

1

1

1

0


    Observation Table:

A

B

C=NOR

X=A+C

Y=B+C

~X

~Y

M=~X+~Y

0

0

1

1

1

0

0

0

0

1

0

0

1

1

0

1

1

0

0

1

0

0

1

1

1

1

0

1

1

0

0

0

M=~M

M=~M

 

1

0

 

0

1

 

0

1

 

1

0

 

    

    ·       Step 1: Column C store the Values According to NOR operation.

    ·       Step 2: Apply OR operation on A and C, store them in Column X.

    ·        Step 3: Apply OR operation on B and C, store them in Column Y.

    ·        Step 4: Take complement of X and Y.

    ·        Step 5: Again, apply OR operation on Complement of X and Y, store 

                     them in Column M.

    ·        Step 6: Take Complement of M.

    ·        Step 7: Again, Complement of M after that we get XNOR by using 

                     only NOR.


    XOR gate using NOR:



Task 4: Verification of XNOR Function:

    Observation:

            ·        By giving input ‘0’ and ‘0’ the output was ‘1’.

            ·        By giving input ‘0’ and ‘1’ and output was ‘0’.

            ·        By giving input ‘1’ and ‘0’ and output was ‘0’.

            ·        By giving input ‘1’ and ‘1’ and output was ’1’.

            ·        Above steps verify that it’s an XNOR gate.

A

B

~( A⊕B)

0

0

1

0

1

0

1

0

0

1

1

1



    Observation Table:

A

B

C=NOR

X=A+C

Y=B+C

~X

~Y

M=~X+~Y

~M

0

0

1

1

1

0

0

0

1

0

1

0

0

1

1

0

1

0

1

0

0

1

0

0

1

1

0

1

1

0

1

1

0

0

0

1

       

    ·   Step 1: Column C store the Values According to NOR operation.

    ·      Step 2: Apply OR operation on A and C, store them in Column X.

    ·   Step 3: Apply OR operation on B and C, store them in Column Y.

    ·   Step 4: Take complement of X and Y.

    ·   Step 5: Again, apply OR operation on Complement of X and Y, store 

                    them in Column  M.

    ·   Step 6: Take Complement of M after that we get XNOR by using only OR.


    XNOR gate using NOR:


        (How many gates are needed to build a certain gate using NOR are CLICK )






Post a Comment

0 Comments